Calculo - James Stewart - 7 Edição - Volume 1

Calculo - James Stewart - 7 Edição - Volume 1

 Download Calculo - James Stewart - 7 Edição - Volume 1

Calculo I - James Stewart

UMA APRESENTAÇÃO DO CÁLCULO 1

Funções e Modelos 9

1.1 Quatro Maneiras de Representar uma Função 10

1.2 Modelos Matemáticos: Uma Lista de Funções Essenciais 22

1.3 Novas Funções a Partir de Conhecidas 34

1.4 Calculadoras Gráficas e Computadores 42



1.5 Funções Exponenciais 48

1.6 Funções Inversas e Logaritmos 55

Revisão 66

Princípios da Resolução de Problemas 69

Limites e Derivadas 75

2.1 Os problemas da Tangente e da Velocidade 76

2.2 O Limite de uma Função 80

2.3 Cálculos Usando Propriedades dos Limites 91

2.4 A Definição Precisa de um Limite 100

2.5 Continuidade 109

2.6 Limites no Infinito; Assíntotas Horizontais 119

2.7 Derivadas e Taxas de Variação 131

Projeto Escrito ■ Métodos Iniciais para Encontrar Tangentes 139

2.8 A Derivada como uma Função 140

Revisão 150

Problemas Quentes 154

Regras de Derivação 157

3.1 Derivadas de Funções Polinomiais e Exponenciais 158

Projeto Aplicado ■ Construindo uma Montanha-Russa Melhor 166

3.2 As Regras do Produto e do Quociente 167

3.3 Derivadas de Funções Trigonométricas 173

3.4 A Regra da Cadeia 179

Projeto Aplicado ■ Onde um Piloto Deve Iniciar a Descida? 188

3.5 Derivação Implícita 188

Projeto Aplicado ■ Famílias de Curvas Implícitas 196

3.6 Derivadas de Funções Logarítmicas 196


VI CÁLCULO

3.7 Taxas de Variação nas Ciências Naturais e Sociais 201

3.8 Crescimento e Decaimento Exponenciais 213

3.9 Taxas Relacionadas 220

3.10 Aproximações Lineares e Diferenciais 226

Projeto Aplicado ■ Polinômios de Taylor 231

3.11 Funções Hiperbólicas 232

Revisão 238

Problemas Quentes 241

Aplicações de Derivação 247

4.1 Valores Máximo e Mínimo 248

Projeto Aplicado ■ O Cálculo do Arcos-Íris 256

4.2 O Teorema do Valor Médio 257

4.3 Como as Derivadas Afetam a Forma de um Gráfico 262

4.4 Formas Indeterminadas e Regra de l’Hôspital 272

Projeto Escrito ■ As Origens da Regra de l’Hôspital 280

4.5 Resumo do Esboço de Curvas 280

4.6 Representação Gráfica com Cálculo e Calculadoras 287

4.7 Problemas de Otimização 294

Projeto Aplicado ■ A Forma de uma Lata 304

4.8 Método de Newton 305

4.9 Primitivas 310

Revisão 317

Problemas Quentes 320

Integrais 325

5.1 Áreas e Distâncias 326

5.2 A Integral Definida 337

Projeto de Descoberta ■ Funções Área 349

5.3 O Teorema Fundamental do Cálculo 350

5.4 Integrais Indefinidas e o Teorema da Variação Total 360

Projeto Escrito ■ Newton, Leibniz e a Invenção do Cálculo 368

5.5 A Regra da Substituição 369

Revisão 376

Problemas Quentes 379

Aplicações de Integração 381

6.1 Áreas entre as Curvas 382

Projeto Aplicado ■ O Índice de Gini 388

6.2 Volumes 389

6.3 Volumes por Cascas Cilíndricas 399

6.4 Trabalho 404

6.5 Valor Médio de uma Função 409

Projeto Aplicado ■ Cálculos e Beisebol 412

Projeto Aplicado ■ Onde Sentar-se no Cinema 413

Revisão 413

Problemas Quentes 415


SUMÁRIO VII

Técnicas de Integração 419

7.1 Integração por Partes 420

7.2 Integrais Trigonométricas 425

7.3 Substituição Trigonométrica 431

7.4 Integração de Funções Racionais por Frações Parciais 438

7.5 Estratégias para Integração 447

7.6 Integração Usando Tabelas e Sistemas de Computação Algébrica 452

Projeto de Descoberta ■ Padrões em Integrais 457

7.7 Integração Aproximada 458

7.8 Integrais Impróprias 470

Revisão 479

Problemas Quentes 483

Mais Aplicações de Integração 487

8.1 Comprimento de Arco 488

Projeto de Descoberta ■ Torneio de Comprimento de Arcos 494

8.2 Área de uma Superfície de Revolução 495

Projeto de Descoberta ■ Rotação em Torno de uma Reta Inclinada 500

8.3 Aplicações à Física e à Engenharia 501

Projeto de Descoberta ■ Xícaras de Café Complementares 510

8.4 Aplicações à Economia e à Biologia 511

8.5 Probabilidade 515

Revisão 521

Problemas Quentes 523

Apêndices A1

A Números, Desigualdades e Valores Absolutos A2

B Geometria Analítica e Retas A9

C Gráficos de Equações de Segundo Grau A14

D Trigonometria A21

E Notação de Somatória (ou Notação Sigma) A30

F Demonstração dos Teoremas A35

G O Logaritmo Definido como uma Integral A44

H Números Complexos A51

I Respostas para os Exercícios Ímpares A58

Índice Remissivo I1

Volume II

Capítulo 9 Equações Diferenciais

Capítulo 10 Equações Paramétricas e Coordenadas Polares

Capítulo 11 Sequências e Séries Infinitas

Capítulo 12 Vetores e a Geometria do Espaço

Capítulo 13 Funções Vetoriais

Capítulo 14 Derivadas Parciais

Capítulo 15 Integrais Múltiplas

Capítulo 16 Cálculo Vetorial

Capítulo 17 Equações Diferenciais de Segunda Ordem

Publicar um comentário

0 Comentários